Review of three Recent Books on the Boundary of Bioinformatics and Systems Biology

نویسندگان

  • Eric Bullinger
  • Monica Schliemann
چکیده

* Correspondence: E.Bullinger@ulg. ac.be Department of Electrical Engineering and Computer Science (Montefiore Institute) and GIGA (Interdisciplinary Cluster for Applied Geno-proteomics), Université de Liège, Belgium • Bioinformatics for Systems Biology by S. Krawetz (Ed.), Springer, February 2009 (2 ed.) ISBN: 978-1-934115-02-2 (BSB) • Systems Biology and Bioinformatics: A Computational Approach by K. Najarian, C. Eichelberger, S. Najarian and S. Gharibzadeh, CRC Press, April 2009, ISBN: 9781420046502 (SBB) • Biomolecular Networks: Methods and Applications in Systems Biology by L. Chen, R.-S. Wang and X.-S. Zhang, Wiley, July 2009, ISBN: 978-0470243732 (BN) Systems biology is a holistic approach combining experimental data on multiple levels, from the genome and proteome over the interactome to signalling and metabolism in single cells, organs and organisms with the use of computational methods and predictive mathematical models. Bioinformatics is the application of computer science to biological systems, in particular for genomic data. This point of view is shared by the three books, published within a few months last year. All three books target a general audience with basic knowledge of biology, mathematics and computer science and cover quite similarly topics. An obvious difference between these books is their size: there is roughly a two-fold increase from SBB to BN and from the latter to BSB, which distinguished itself from the other two by being a collection of chapters by different authors, with different writing and presentation styles. All books contain an introduction to biology and to the mathematics needed in the remainder. BSB presents in a complete, very detailed and illustrated manner the cellular organisation over gene expression up to protein synthesis and cell signalling, in over 100 pages. These chapters contain glossaries and further references and are even suited for biologists in need of a recap. The introduction also contains a chapter on the epigenetics of spermiogenesis, whose style and specificity seems somehow misplaced in this part of the book, as it is more a research article than a review or textbook article as the other chapters of Part I. Also the chapter “Genomic Analysis of Transcription” might have been better placed in Part III “Transcriptome Analysis”. BN’s biological introduction is significantly shorter: just a few pages, contains a few graphical illustrations and is already very directed towards networks, highlighting their presence from gene regulation to signalling. SBB takes a middle road, the introduction is proportionally longer, however the presentation is fundamentally different, almost as a listicle (heading with one or two paragraphs, or even just lists) without graphical illustrations. Bullinger and Schliemann BioMedical Engineering OnLine 2010, 9:33 http://www.biomedical-engineering-online.com/content/9/1/33

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Finding Exact and Solo LTR-Retrotransposons in Biological Sequences Using SVM

Finding repetitive subsequences in genome is a challengeable problem in bioinformatics research area. A lot of approaches have been proposed to solve the problem, which could be divided to library base and de novo methods. The library base methods use predetermined repetitive genome’s subsequences, where library-less methods attempt to discover repetitive subsequences by analytical approach...

متن کامل

gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences

Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010